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The boxicity of a graph G , denoted by box(G ), is the smallest d such that G
is the intersection graph of some d-boxes.
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Boxicity

d-box: the cartesian product of d intervals [x1, y1]× . . .× [xd , yd ] of R

The boxicity of a graph G , denoted by box(G ), is the smallest d such that G
is the intersection graph of some d-boxes.

Definition (Roberts 1969)

The boxicity of a graph G = (V ,E ) is the smallest k for which there exist k
interval graphs Gi = (V ,Ei ), 1 ≤ i ≤ k , such that E = E1 ∩ . . . ∩ Ek .



Graphs with large boxicity

Kn minus a perfect matching



Graphs with large boxicity

Kn minus a perfect matching



Graphs with large boxicity

Kn minus a perfect matching



Graphs with large boxicity

Kn minus a perfect matching

boxicity n/2



Boxicity and poset dimension

The dimension of a poset P is the minimum number of total orders realizing P
(i.e. such that if x <P y if and only if x < y in all the total orders).

If P is a poset of height 2 and G is its comparability graph, then
box(G ) ≤ dim(P) ≤ 2 box(G ).

Theorem (Adiga, Bhowmick, Chandran 2011)

If G is a graph and Gc is its extended double cover, then
1
2 box(G ) ≤ box(Gc) ≤ box(G ) + 2.

Theorem (Adiga, Bhowmick, Chandran 2011)

If G is a graph and P is its extended double cover poset, then
1
2 dim(P)− 2 ≤ box(G ) ≤ 2 dim(P).

Corollary (Adiga, Bhowmick, Chandran 2011)
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Dimension of the incidence poset

Incidence poset of G : the elements are the vertices and edges of G , with the
inclusion relation.

If G is a graph and P is its incidence poset, then box(G∗) ≤ dim(P) ≤
2 box(G∗), where G∗ denotes the 1-subdivision of G .

Observation

Subdivided Kn

boxicity Θ(log log n)
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Dimension of the adjacency poset

Adjacency poset of G (Felsner, Trotter 2000):

If G is a graph and P is its adjacency poset, then dim(P) ≥ χ(G ).

Observation

If G is a graph and P is its adjacency poset, then dim(P) ≤ 2 box(G )+χ(G )+4.

Observation (E., Joret 2013)
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Separation dimension

Separation dimension of G = (V ,E ) (Basavaraju, Chandran, Golumbic, Mathew,
and Rajendraprasad 2014):
the minimum d such that there is a mapping V → Rd such that for any two
non-incident edges uv , xy ∈ E , some axis-parallel hyperplane separates {u, v}
from {x , y}.

The separation dimension of G is the boxicity of the line graph of G .

Observation (BCGMR 2014)

Any graph of maximum degree ∆ has separation dimension at most ∆ ·29 log∗∆.

Theorem (Alon+BCMR 2015)

A fractional version was recently introduced (Loeb & West 2016) and (Alon
2016). It is always at most 3.
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Graphs with small boxicity

Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).

Planar graphs have boxicity at most 3 (Thomassen 1986).

Graphs of Euler genus g have boxicity at most 5g + 3 (E., Joret 2013).

Graphs with treewidth k have boxicity at most k + 1 (Chandran, Sivadasan
2007).

Graphs with maximum degree ∆ have boxicity O(∆ log2 ∆) and some have
boxicity Ω(∆ log ∆) (Adiga, Bhowmick, Chandran 2011).

Graphs with Euler genus g have boxicity O(
√
g log g), and some have boxicity

Ω(
√
g log g).

Theorem (E. 2015)

Graphs with Euler genus g without non-contractible cycles of length at most
40 · 2g have boxicity at most 5.

Theorem (E. 2015)
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Boxicity of graphs on surfaces

If a graph G has Euler genus g , then there is a set A of O(g) vertices such
that G − A has an acyclic coloring with 7 colors.

Theorem (Kawarabayashi, Thomassen 2012)

acyclic col. with 7 colors O(g) vertices

K K

=

∩
box ≤ 42 box = O(

√
g log g) ?
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Boxicity of graphs on surfaces

O(g) vertices

S

+ We may assume that all orange
vertices have distinct blue neighborhoods

+ stable set instead of clique

⇒ the graph has O(g 4) vertices and is O(
√
g)-degenerate

If a graph G with n vertices is k-degenerate, then box(G ) = O(k log n).

Theorem (Adiga, Chandran, Mathew 2014)
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Consider the following
random bipartite graph Gn:

n vertices n vertices

each edge
with

1
log n

with high probability,

Gn has at most 2n2

log n edges

and then genus at most 2n2

log n + 2

probability

box(Gn) = Ω(n) (consequence of Erdős, Kierstead, Trotter, 1991)

Theorem (Adiga, Bhowmick, Chandran, 2011)

It follows that box(Gn) = Ω(
√
g log g).
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have boxicity at most 5.

Theorem (E. 2015)
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Graphs with large girth

For any proper minor-closed class F , there is an integer g = g(F) such that
any graph of F of girth at least g has boxicity at most 3.

Theorem (E. 2015)

For any proper minor-closed class F , there is an integer g = g(F) such that
any graph of F of girth at least g has a vertex of degree at most one or a path
with 5 internal vertices of degree 2.

Theorem (Galluccio Goddyn Hell. 2001)

There is a constant c such that any graph of Euler genus g and girth at least
c log g has boxicity at most 3.

Theorem (E. 2015)



Open problems

What is the boxicity of Kt-minor-free graphs? (somewhere between
Ω(t
√

log t) and t4(log t)2)

What is the boxicity of toroidal graphs? (somewhere between 4 and 6)

Is it true that locally planar graphs have boxicity at most 3?

Is it true that if G has Euler genus g , then O(g) vertices can be removed
from G so that the resulting graph has boxicity at most 3? (it is true with 5
instead of 3)

Most of the questions remain interesting for the dimension of the adjacency poset
and the separation dimension of graphs, instead of their boxicity.
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