Boxicity and Related parameters

Louis Esperet

CNRS, Laboratoire G-SCOP, Grenoble, France
Order \& Geometry, Gultowy Palace September, 2016

Boxicity

d-box: the cartesian product of d intervals $\left[x_{1}, y_{1}\right] \times \ldots \times\left[x_{d}, y_{d}\right]$ of \mathbb{R}

Boxicity

d-box: the cartesian product of d intervals $\left[x_{1}, y_{1}\right] \times \ldots \times\left[x_{d}, y_{d}\right]$ of \mathbb{R}

Definition (Roberts 1969)

The boxicity of a graph G, denoted by box (G), is the smallest d such that G is the intersection graph of some d-boxes.

Boxicity

d-box: the cartesian product of d intervals $\left[x_{1}, y_{1}\right] \times \ldots \times\left[x_{d}, y_{d}\right]$ of \mathbb{R}

Definition (Roberts 1969)

The boxicity of a graph G, denoted by box (G), is the smallest d such that G is the intersection graph of some d-boxes.

Boxicity

d-box: the cartesian product of d intervals $\left[x_{1}, y_{1}\right] \times \ldots \times\left[x_{d}, y_{d}\right]$ of \mathbb{R}

Definition (Roberts 1969)

The boxicity of a graph G, denoted by box (G), is the smallest d such that G is the intersection graph of some d-boxes.

Boxicity

d-box: the cartesian product of d intervals $\left[x_{1}, y_{1}\right] \times \ldots \times\left[x_{d}, y_{d}\right]$ of \mathbb{R}

Definition (Roberts 1969)

The boxicity of a graph G, denoted by box (G), is the smallest d such that G is the intersection graph of some d-boxes.

Boxicity

d-box: the cartesian product of d intervals $\left[x_{1}, y_{1}\right] \times \ldots \times\left[x_{d}, y_{d}\right]$ of \mathbb{R}

Definition (Roberts 1969)

The boxicity of a graph G, denoted by box (G), is the smallest d such that G is the intersection graph of some d-boxes.

Boxicity

d-box: the cartesian product of d intervals $\left[x_{1}, y_{1}\right] \times \ldots \times\left[x_{d}, y_{d}\right]$ of \mathbb{R}

Definition (Roberts 1969)

The boxicity of a graph G, denoted by box (G), is the smallest d such that G is the intersection graph of some d-boxes.

The boxicity of a graph $G=(V, E)$ is the smallest k for which there exist k interval graphs $G_{i}=\left(V, E_{i}\right), 1 \leq i \leq k$, such that $E=E_{1} \cap \ldots \cap E_{k}$.

Graphs with large boxicity

K_{n} minus a perfect matching

Graphs with large boxicity

K_{n} minus a perfect matching

Graphs with large boxicity

K_{n} minus a perfect matching

Graphs with large boxicity

K_{n} minus a perfect matching
boxicity $n / 2$

Boxicity and poset dimension

The dimension of a poset \mathcal{P} is the minimum number of total orders realizing \mathcal{P} (i.e. such that if $x<\mathcal{p} y$ if and only if $x<y$ in all the total orders).

Boxicity and poset dimension

The dimension of a poset \mathcal{P} is the minimum number of total orders realizing \mathcal{P} (i.e. such that if $x<\mathcal{p} y$ if and only if $x<y$ in all the total orders).

Theorem (Adiga, Bhowmick, Chandran 2011)
If \mathcal{P} is a poset of height 2 and G is its comparability graph, then $\operatorname{box}(G) \leq \operatorname{dim}(\mathcal{P}) \leq 2 \operatorname{box}(G)$.

Boxicity and poset dimension

The dimension of a poset \mathcal{P} is the minimum number of total orders realizing \mathcal{P} (i.e. such that if $x<\mathcal{p} y$ if and only if $x<y$ in all the total orders).

Theorem (Adiga, Bhowmick, Chandran 2011)
If \mathcal{P} is a poset of height 2 and G is its comparability graph, then $\operatorname{box}(G) \leq \operatorname{dim}(\mathcal{P}) \leq 2 \operatorname{box}(G)$.
extended double cover of G :

Boxicity and poset dimension

The dimension of a poset \mathcal{P} is the minimum number of total orders realizing \mathcal{P} (i.e. such that if $x<\mathcal{p} y$ if and only if $x<y$ in all the total orders).

Theorem (Adiga, Bhowmick, Chandran 2011)
If \mathcal{P} is a poset of height 2 and G is its comparability graph, then $\operatorname{box}(G) \leq \operatorname{dim}(\mathcal{P}) \leq 2 \operatorname{box}(G)$.

Theorem (Adiga, Bhowmick, Chandran 2011)

If G is a graph and G_{c} is its extended double cover, then
$\frac{1}{2} \operatorname{box}(G) \leq \operatorname{box}\left(G_{c}\right) \leq \operatorname{box}(G)+2$.

Boxicity and poset dimension

The dimension of a poset \mathcal{P} is the minimum number of total orders realizing \mathcal{P} (i.e. such that if $x<\mathcal{P} y$ if and only if $x<y$ in all the total orders).

Theorem (Adiga, Bhowmick, Chandran 2011)
If \mathcal{P} is a poset of height 2 and G is its comparability graph, then $\operatorname{box}(G) \leq \operatorname{dim}(\mathcal{P}) \leq 2 \operatorname{box}(G)$.

Theorem (Adiga, Bhowmick, Chandran 2011)

If G is a graph and G_{c} is its extended double cover, then $\frac{1}{2} \operatorname{box}(G) \leq \operatorname{box}\left(G_{c}\right) \leq \operatorname{box}(G)+2$.

Corollary (Adiga, Bhowmick, Chandran 2011)
If G is a graph and \mathcal{P} is its extended double cover poset, then $\frac{1}{2} \operatorname{dim}(\mathcal{P})-2 \leq \operatorname{box}(G) \leq 2 \operatorname{dim}(\mathcal{P})$.

Dimension of The incidence poset

Incidence poset of G : the elements are the vertices and edges of G, with the inclusion relation.

Dimension of The incidence poset

Incidence poset of G : the elements are the vertices and edges of G, with the inclusion relation.

Observation
If G is a graph and \mathcal{P} is its incidence poset, then $\operatorname{box}\left(G^{*}\right) \leq \operatorname{dim}(\mathcal{P}) \leq$ 2 box $\left(G^{*}\right)$, where G^{*} denotes the 1 -subdivision of G.

Dimension of the incidence poset

Incidence poset of G : the elements are the vertices and edges of G, with the inclusion relation.

Observation

If G is a graph and \mathcal{P} is its incidence poset, then $\operatorname{box}\left(G^{*}\right) \leq \operatorname{dim}(\mathcal{P}) \leq$ 2 box $\left(G^{*}\right)$, where G^{*} denotes the 1 -subdivision of G.

Subdivided K_{n} boxicity $\Theta(\log \log n)$

Dimension of The adjacency poset

Adjacency poset of G (Felsner, Trotter 2000):

Dimension of the adjacency poset

Adjacency poset of G (Felsner, Trotter 2000):

Observation

If G is a graph and \mathcal{P} is its adjacency poset, then $\operatorname{dim}(\mathcal{P}) \geq \chi(G)$.

Dimension of the adjacency poset

Adjacency poset of G (Felsner, Trotter 2000):

Observation

If G is a graph and \mathcal{P} is its adjacency poset, then $\operatorname{dim}(\mathcal{P}) \geq \chi(G)$.

Observation (E., Joret 2013)

If G is a graph and \mathcal{P} is its adjacency poset, then $\operatorname{dim}(\mathcal{P}) \leq 2 \operatorname{box}(G)+\chi(G)+4$.

SEPARATION DIMENSION

Separation dimension of $G=(V, E)$ (Basavaraju, Chandran, Golumbic, Mathew, and Rajendraprasad 2014):
the minimum d such that there is a mapping $V \rightarrow \mathbb{R}^{d}$ such that for any two non-incident edges $u v, x y \in E$, some axis-parallel hyperplane separates $\{u, v\}$ from $\{x, y\}$.

SEPARATION DIMENSION

Separation dimension of $G=(V, E)$ (Basavaraju, Chandran, Golumbic, Mathew, and Rajendraprasad 2014):
the minimum d such that there is a mapping $V \rightarrow \mathbb{R}^{d}$ such that for any two non-incident edges $u v, x y \in E$, some axis-parallel hyperplane separates $\{u, v\}$ from $\{x, y\}$.

Observation (BCGMR 2014)

The separation dimension of G is the boxicity of the line graph of G.

Separation dimension

Separation dimension of $G=(V, E)$ (Basavaraju, Chandran, Golumbic, Mathew, and Rajendraprasad 2014):
the minimum d such that there is a mapping $V \rightarrow \mathbb{R}^{d}$ such that for any two non-incident edges $u v, x y \in E$, some axis-parallel hyperplane separates $\{u, v\}$ from $\{x, y\}$.

Observation (BCGMR 2014)

The separation dimension of G is the boxicity of the line graph of G.

Theorem (Alon+BCMR 2015)
Any graph of maximum degree Δ has separation dimension at most $\Delta \cdot 2^{9 \log ^{*} \Delta}$.

Separation dimension

Separation dimension of $G=(V, E)$ (Basavaraju, Chandran, Golumbic, Mathew, and Rajendraprasad 2014):
the minimum d such that there is a mapping $V \rightarrow \mathbb{R}^{d}$ such that for any two non-incident edges $u v, x y \in E$, some axis-parallel hyperplane separates $\{u, v\}$ from $\{x, y\}$.

Observation (BCGMR 2014)

The separation dimension of G is the boxicity of the line graph of G.

Theorem (Alon+BCMR 2015)
Any graph of maximum degree Δ has separation dimension at most $\Delta \cdot 2^{9 \log ^{*} \Delta}$.

A fractional version was recently introduced (Loeb \& West 2016) and (Alon 2016). It is always at most 3.

Graphs with small Boxicity

- Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).

Graphs with small boxicity

- Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).
- Planar graphs have boxicity at most 3 (Thomassen 1986).

Graphs with small Boxicity

- Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).
- Planar graphs have boxicity at most 3 (Thomassen 1986).

Graphs with small boxicity

- Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).
- Planar graphs have boxicity at most 3 (Thomassen 1986).
- Graphs of Euler genus g have boxicity at most $5 g+3$ (E., Joret 2013).

Graphs with small Boxicity

- Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).
- Planar graphs have boxicity at most 3 (Thomassen 1986).
- Graphs of Euler genus g have boxicity at most $5 g+3$ (E., Joret 2013).
- Graphs with treewidth k have boxicity at most $k+1$ (Chandran, Sivadasan 2007).

Graphs with small boxicity

- Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).
- Planar graphs have boxicity at most 3 (Thomassen 1986).
- Graphs of Euler genus g have boxicity at most $5 g+3$ (E., Joret 2013).
- Graphs with treewidth k have boxicity at most $k+1$ (Chandran, Sivadasan 2007).
- Graphs with maximum degree Δ have boxicity $O\left(\Delta \log ^{2} \Delta\right)$ and some have boxicity $\Omega(\Delta \log \Delta)$ (Adiga, Bhowmick, Chandran 2011).

Graphs with small Boxicity

- Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).
- Planar graphs have boxicity at most 3 (Thomassen 1986).
- Graphs of Euler genus g have boxicity at most $5 g+3$ (E., Joret 2013).
- Graphs with treewidth k have boxicity at most $k+1$ (Chandran, Sivadasan 2007).
- Graphs with maximum degree Δ have boxicity $O\left(\Delta \log ^{2} \Delta\right)$ and some have boxicity $\Omega(\Delta \log \Delta)$ (Adiga, Bhowmick, Chandran 2011).

Theorem (E. 2015)

Graphs with Euler genus g have boxicity $O(\sqrt{g} \log g)$, and some have boxicity $\Omega(\sqrt{g \log g})$.

Graphs with small Boxicity

- Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).
- Planar graphs have boxicity at most 3 (Thomassen 1986).
- Graphs of Euler genus g have boxicity at most $5 g+3$ (E., Joret 2013).
- Graphs with treewidth k have boxicity at most $k+1$ (Chandran, Sivadasan 2007).
- Graphs with maximum degree Δ have boxicity $O\left(\Delta \log ^{2} \Delta\right)$ and some have boxicity $\Omega(\Delta \log \Delta)$ (Adiga, Bhowmick, Chandran 2011).

Theorem (E. 2015)

Graphs with Euler genus g have boxicity $O(\sqrt{g} \log g)$, and some have boxicity $\Omega(\sqrt{g \log g})$.

Theorem (E. 2015)

Graphs with Euler genus g without non-contractible cycles of length at most $40 \cdot 2^{g}$ have boxicity at most 5 .

Boxicity and acyclic coloring

A proper coloring is acyclic if any two color classes induce a forest.

Boxicity and Acyclic coloring

A proper coloring is acyclic if any two color classes induce a forest.

Observation

If a graph G has an acyclic coloring with k colors, then $\operatorname{box}(G) \leq k(k-1)$.

Boxicity and acyclic coloring

A proper coloring is acyclic if any two color classes induce a forest.

Observation

If a graph G has an acyclic coloring with k colors, then $\operatorname{box}(G) \leq k(k-1)$.

Boxicity and acyclic coloring

A proper coloring is acyclic if any two color classes induce a forest.

Observation

If a graph G has an acyclic coloring with k colors, then $\operatorname{box}(G) \leq k(k-1)$.

Boxicity and acyclic coloring

A proper coloring is acyclic if any two color classes induce a forest.

Observation

If a graph G has an acyclic coloring with k colors, then $\operatorname{box}(G) \leq k(k-1)$.

$\binom{k}{2}$ supergraphs of boxicity 2 , containing every non-edge of G

Boxicity and acyclic coloring

A proper coloring is acyclic if any two color classes induce a forest.

Observation

If a graph G has an acyclic coloring with k colors, then $\operatorname{box}(G) \leq k(k-1)$.
vertices
colored i or j the rest

$k(k-1)$ supergraphs of boxicity 1 (=interval graphs), containing every non-edge of G

Boxicity and acyclic coloring

A proper coloring is acyclic if any two color classes induce a forest.

Observation

If a graph G has an acyclic coloring with k colors, then $\operatorname{box}(G) \leq k(k-1)$.

vertices

colored i or j the rest

$k(k-1)$ supergraphs of boxicity 1 (=interval graphs), containing every non-edge of G

$$
\Rightarrow \operatorname{box}(G) \leq k(k-1)
$$

Boxicity of graphs on surfaces

Theorem (Kawarabayashi, Thomassen 2012)
If a graph G has Euler genus g, then there is a set A of $O(g)$ vertices such that $G-A$ has an acyclic coloring with 7 colors.

Boxicity of graphs on surfaces

Theorem (Kawarabayashi, Thomassen 2012)
If a graph G has Euler genus g, then there is a set A of $O(g)$ vertices such that $G-A$ has an acyclic coloring with 7 colors.

Boxicity of graphs on surfaces

Theorem (Kawarabayashi, Thomassen 2012)
If a graph G has Euler genus g, then there is a set A of $O(g)$ vertices such that $G-A$ has an acyclic coloring with 7 colors.

Boxicity of graphs on surfaces

Theorem (Kawarabayashi, Thomassen 2012)
If a graph G has Euler genus g, then there is a set A of $O(g)$ vertices such that $G-A$ has an acyclic coloring with 7 colors.

Boxicity of graphs on surfaces

Theorem (Kawarabayashi, Thomassen 2012)
If a graph G has Euler genus g, then there is a set A of $O(g)$ vertices such that $G-A$ has an acyclic coloring with 7 colors.

Boxicity of graphs on surfaces

Boxicity of graphs on surfaces

Boxicity of graphs on surfaces

 vertices have distinct blue neighborhoods

Boxicity of graphs on surfaces

 vertices have distinct blue neighborhoods + stable set instead of clique

Boxicity of graphs on surfaces

 vertices have distinct blue neighborhoods + stable set instead of clique \Rightarrow the graph has $O\left(g^{4}\right)$ vertices

Boxicity of graphs on surfaces

vertices have distinct blue neighborhoods

+ stable set instead of clique
\Rightarrow the graph has $O\left(g^{4}\right)$ vertices and is $O(\sqrt{g})$-degenerate

Boxicity of graphs on surfaces

 vertices have distinct blue neighborhoods + stable set instead of clique
\Rightarrow the graph has $O\left(g^{4}\right)$ vertices and is $O(\sqrt{g})$-degenerate

Theorem (Adiga, Chandran, Mathew 2014)
If a graph G with n vertices is k-degenerate, then $\operatorname{box}(G)=O(k \log n)$.

Lower bound

Consider the following random bipartite graph G_{n} :

Lower bound

Consider the following random bipartite graph G_{n} :
with high probability,
G_{n} has at most $\frac{2 n^{2}}{\log n}$ edges

Lower bound

Consider the following random bipartite graph G_{n} :
with high probability,
G_{n} has at most $\frac{2 n^{2}}{\log n}$ edges
and then genus at most $\frac{2 n^{2}}{\log n}+2$

Lower bound

Consider the following random bipartite graph G_{n} :
with high probability,
G_{n} has at most $\frac{2 n^{2}}{\log n}$ edges and then genus at most $\frac{2 n^{2}}{\log n}+2$

Theorem (Adiga, Bhowmick, Chandran, 2011)
$\operatorname{box}\left(G_{n}\right)=\Omega(n)$ (consequence of Erdős, Kierstead, Trotter, 1991)

Lower bound

Consider the following random bipartite graph G_{n} :
with high probability,
G_{n} has at most $\frac{2 n^{2}}{\log n}$ edges and then genus at most $\frac{2 n^{2}}{\log n}+2$

Theorem (Adiga, Bhowmick, Chandran, 2011)
$\operatorname{box}\left(G_{n}\right)=\Omega(n)$ (consequence of Erdős, Kierstead, Trotter, 1991)
It follows that $\operatorname{box}\left(G_{n}\right)=\Omega(\sqrt{g \log g})$.

Locally planar graphs

Theorem (E. 2015)

Graphs with genus g, without non-contractible cycles of length at most $40 \cdot 2^{g}$, have boxicity at most 5 .

Locally planar graphs

Theorem (E. 2015)

Graphs with genus g, without non-contractible cycles of length at most $40 \cdot 2^{g}$, have boxicity at most 7 .
G triangulation with edge-width at least $40 \cdot 2^{g}$.

g induced cycles, far apart, such that after cutting along them, the resulting graph is planar

Locally planar graphs

Theorem (E. 2015)

Graphs with genus g, without non-contractible cycles of length at most $40 \cdot 2^{g}$, have boxicity at most 7 .
G triangulation with edge-width at least $40 \cdot 2^{g}$.

g induced cycles, far apart, such that after cutting along them, the resulting graph is planar

Locally planar graphs

Theorem (E. 2015)

Graphs with genus g, without non-contractible cycles of length at most $40 \cdot 2^{g}$, have boxicity at most 7 .
G triangulation with edge-width at least $40 \cdot 2^{g}$.

g induced cycles, far apart, such that after cutting along them, the resulting graph is planar

Locally planar graphs

Theorem (E. 2015)

Graphs with genus g, without non-contractible cycles of length at most $40 \cdot 2^{g}$, have boxicity at most 7 .
G triangulation with edge-width at least $40 \cdot 2^{g}$.

g induced cycles, far apart, such that after cutting along them, the resulting graph is planar

Locally planar graphs

Theorem (E. 2015)

Graphs with genus g, without non-contractible cycles of length at most $40 \cdot 2^{g}$, have boxicity at most 7 .

Locally planar graphs

Theorem (E. 2015)

Graphs with genus g, without non-contractible cycles of length at most $40 \cdot 2^{g}$, have boxicity at most 7 .

Graphs with large girth

Theorem (E. 2015)
For any proper minor-closed class \mathcal{F}, there is an integer $g=g(\mathcal{F})$ such that any graph of \mathcal{F} of girth at least g has boxicity at most 3 .

Graphs with large girth

Theorem (E. 2015)

For any proper minor-closed class \mathcal{F}, there is an integer $g=g(\mathcal{F})$ such that any graph of \mathcal{F} of girth at least g has boxicity at most 3 .

Graphs with large girth

Theorem (E. 2015)

For any proper minor-closed class \mathcal{F}, there is an integer $g=g(\mathcal{F})$ such that any graph of \mathcal{F} of girth at least g has boxicity at most 3 .

Graphs with large girth

Theorem (E. 2015)

For any proper minor-closed class \mathcal{F}, there is an integer $g=g(\mathcal{F})$ such that any graph of \mathcal{F} of girth at least g has boxicity at most 3 .

Graphs with large girth

Theorem (E. 2015)

For any proper minor-closed class \mathcal{F}, there is an integer $g=g(\mathcal{F})$ such that any graph of \mathcal{F} of girth at least g has boxicity at most 3 .

Graphs with large girth

Theorem (E. 2015)

For any proper minor-closed class \mathcal{F}, there is an integer $g=g(\mathcal{F})$ such that any graph of \mathcal{F} of girth at least g has boxicity at most 3 .

Theorem (Galluccio Goddyn Hell. 2001)

For any proper minor-closed class \mathcal{F}, there is an integer $g=g(\mathcal{F})$ such that any graph of \mathcal{F} of girth at least g has a vertex of degree at most one or a path with 5 internal vertices of degree 2 .

Graphs with large girth

Theorem (E. 2015)

For any proper minor-closed class \mathcal{F}, there is an integer $g=g(\mathcal{F})$ such that any graph of \mathcal{F} of girth at least g has boxicity at most 3 .

Theorem (Galluccio Goddyn Hell. 2001)

For any proper minor-closed class \mathcal{F}, there is an integer $g=g(\mathcal{F})$ such that any graph of \mathcal{F} of girth at least g has a vertex of degree at most one or a path with 5 internal vertices of degree 2 .

Theorem (E. 2015)

There is a constant c such that any graph of Euler genus g and girth at least $c \log g$ has boxicity at most 3 .

Open problems

- What is the boxicity of K_{t}-minor-free graphs? (somewhere between $\Omega(t \sqrt{\log t})$ and $\left.t^{4}(\log t)^{2}\right)$

Open problems

- What is the boxicity of K_{t}-minor-free graphs? (somewhere between $\Omega(t \sqrt{\log t})$ and $\left.t^{4}(\log t)^{2}\right)$
- What is the boxicity of toroidal graphs? (somewhere between 4 and 6)

Open problems

- What is the boxicity of K_{t}-minor-free graphs? (somewhere between $\Omega(t \sqrt{\log t})$ and $\left.t^{4}(\log t)^{2}\right)$
- What is the boxicity of toroidal graphs? (somewhere between 4 and 6)
- Is it true that locally planar graphs have boxicity at most 3?

Open problems

- What is the boxicity of K_{t}-minor-free graphs? (somewhere between $\Omega(t \sqrt{\log t})$ and $\left.t^{4}(\log t)^{2}\right)$
- What is the boxicity of toroidal graphs? (somewhere between 4 and 6)
- Is it true that locally planar graphs have boxicity at most 3?
- Is it true that if G has Euler genus g, then $O(g)$ vertices can be removed from G so that the resulting graph has boxicity at most 3? (it is true with 5 instead of 3)

Open problems

- What is the boxicity of K_{t}-minor-free graphs? (somewhere between $\Omega(t \sqrt{\log t})$ and $\left.t^{4}(\log t)^{2}\right)$
- What is the boxicity of toroidal graphs? (somewhere between 4 and 6)
- Is it true that locally planar graphs have boxicity at most 3?
- Is it true that if G has Euler genus g, then $O(g)$ vertices can be removed from G so that the resulting graph has boxicity at most 3? (it is true with 5 instead of 3)

Most of the questions remain interesting for the dimension of the adjacency poset and the separation dimension of graphs, instead of their boxicity.

