BOXICITY AND RELATED PARAMETERS

Louis Esperet

CNRS, Laboratoire G-SCOP, Grenoble, France

Order & Geometry, Gułtowy Palace September, 2016

d-box: the cartesian product of *d* intervals $[x_1, y_1] \times \ldots \times [x_d, y_d]$ of \mathbb{R}

d-box: the cartesian product of *d* intervals $[x_1, y_1] \times \ldots \times [x_d, y_d]$ of \mathbb{R}

Definition (Roberts 1969)

d-box: the cartesian product of *d* intervals $[x_1, y_1] \times \ldots \times [x_d, y_d]$ of \mathbb{R}

Definition (Roberts 1969)

d-box: the cartesian product of *d* intervals $[x_1, y_1] \times \ldots \times [x_d, y_d]$ of \mathbb{R}

Definition (Roberts 1969)

d-box: the cartesian product of *d* intervals $[x_1, y_1] \times \ldots \times [x_d, y_d]$ of \mathbb{R}

Definition (Roberts 1969)

d-box: the cartesian product of *d* intervals $[x_1, y_1] \times \ldots \times [x_d, y_d]$ of \mathbb{R}

Definition (Roberts 1969)

d-box: the cartesian product of *d* intervals $[x_1, y_1] \times \ldots \times [x_d, y_d]$ of \mathbb{R}

Definition (Roberts 1969)

The boxicity of a graph G, denoted by box(G), is the smallest d such that G is the intersection graph of some d-boxes.

The boxicity of a graph G = (V, E) is the smallest k for which there exist k interval graphs $G_i = (V, E_i)$, $1 \le i \le k$, such that $E = E_1 \cap \ldots \cap E_k$.

 K_n minus a perfect matching

 K_n minus a perfect matching

 K_n minus a perfect matching

 K_n minus a perfect matching

boxicity n/2

The dimension of a poset \mathcal{P} is the minimum number of total orders realizing \mathcal{P} (i.e. such that if $x <_{\mathcal{P}} y$ if and only if x < y in all the total orders).

The dimension of a poset \mathcal{P} is the minimum number of total orders realizing \mathcal{P} (i.e. such that if $x <_{\mathcal{P}} y$ if and only if x < y in all the total orders).

_	Т	hee	orei	n (Adiga,	Bh	owmick,	C	nandra	an 2	201	1)			
	f	\mathcal{P}	is	а	poset	of	height	2	and	G	is	its	comparability	graph,	then
	bo	x(6	5) <	≤ d	$im(\mathcal{P})$	≤ 2	box(G).								

The dimension of a poset \mathcal{P} is the minimum number of total orders realizing \mathcal{P} (i.e. such that if $x <_{\mathcal{P}} y$ if and only if x < y in all the total orders).

extended double cover of G:

The dimension of a poset \mathcal{P} is the minimum number of total orders realizing \mathcal{P} (i.e. such that if $x <_{\mathcal{P}} y$ if and only if x < y in all the total orders).

_	Т	heo	orei	n (Adiga,	Bho	owmick,	C	nandra	an 2	201	1)			
	f	\mathcal{P}	is	а	poset	of	height	2	and	G	is	its	comparability	graph,	then
	00	x(6	;) <	≦ di	$im(\mathcal{P})$	≤ 2	box(G).								

_	Tł	ieor	em	(Ac	liga, Bho	owmic	k, Ch	andr	an 20)))			
	lf	G	is	а	graph	and	G _c	is	its	extended	double	cover,	then
	$\frac{1}{2}$ b	ox((≥ (د	≥ bo	$x(G_c) \leq$	box(C) + :	2.					

The dimension of a poset \mathcal{P} is the minimum number of total orders realizing \mathcal{P} (i.e. such that if $x <_{\mathcal{P}} y$ if and only if x < y in all the total orders).

_(Theorem (Adiga, Bhowmick, Chandran 2011)												
lt	f	G	is	а	graph	and	G _c	is	its	extended	double	cover,	then
$\frac{1}{2}$	$\frac{1}{2}\operatorname{box}(G) \leq \operatorname{box}(G_c) \leq \operatorname{box}(G) + 2.$												

Corollary (Adiga, Bhowmick, Chandran 2011) If G is a graph and \mathcal{P} is its extended double cover poset, then $\frac{1}{2}\dim(\mathcal{P}) - 2 \leq \operatorname{box}(G) \leq 2\dim(\mathcal{P}).$

DIMENSION OF THE INCIDENCE POSET

Incidence poset of G: the elements are the vertices and edges of G, with the inclusion relation.

DIMENSION OF THE INCIDENCE POSET

Incidence poset of G: the elements are the vertices and edges of G, with the inclusion relation.

(Observation)

If G is a graph and \mathcal{P} is its incidence poset, then $box(G^*) \leq dim(\mathcal{P}) \leq 2box(G^*)$, where G^* denotes the 1-subdivision of G.

DIMENSION OF THE INCIDENCE POSET

Incidence poset of G: the elements are the vertices and edges of G, with the inclusion relation.

(Observation)

If G is a graph and \mathcal{P} is its incidence poset, then $box(G^*) \leq dim(\mathcal{P}) \leq 2box(G^*)$, where G^* denotes the 1-subdivision of G.

Subdivided K_n

boxicity $\Theta(\log \log n)$

DIMENSION OF THE ADJACENCY POSET

Adjacency poset of *G* (Felsner, Trotter 2000):

DIMENSION OF THE ADJACENCY POSET

Adjacency poset of *G* (Felsner, Trotter 2000):

Observation If G is a graph and \mathcal{P} is its adjacency poset, then dim $(\mathcal{P}) \ge \chi(G)$. DIMENSION OF THE ADJACENCY POSET

Adjacency poset of *G* (Felsner, Trotter 2000):

Observation

If G is a graph and \mathcal{P} is its adjacency poset, then $\dim(\mathcal{P}) \geq \chi(G)$.

Observation (E., Joret 2013)

If G is a graph and \mathcal{P} is its adjacency poset, then dim $(\mathcal{P}) \leq 2 \operatorname{box}(G) + \chi(G) + 4$.

Separation dimension of G = (V, E) (Basavaraju, Chandran, Golumbic, Mathew, and Rajendraprasad 2014):

the minimum d such that there is a mapping $V \to \mathbb{R}^d$ such that for any two non-incident edges $uv, xy \in E$, some axis-parallel hyperplane separates $\{u, v\}$ from $\{x, y\}$.

Separation dimension of G = (V, E) (Basavaraju, Chandran, Golumbic, Mathew, and Rajendraprasad 2014):

the minimum *d* such that there is a mapping $V \to \mathbb{R}^d$ such that for any two non-incident edges $uv, xy \in E$, some axis-parallel hyperplane separates $\{u, v\}$ from $\{x, y\}$.

Observation (BCGMR 2014)

The separation dimension of G is the boxicity of the line graph of G.

Separation dimension of G = (V, E) (Basavaraju, Chandran, Golumbic, Mathew, and Rajendraprasad 2014):

the minimum d such that there is a mapping $V \to \mathbb{R}^d$ such that for any two non-incident edges $uv, xy \in E$, some axis-parallel hyperplane separates $\{u, v\}$ from $\{x, y\}$.

Observation (BCGMR 2014)

The separation dimension of G is the boxicity of the line graph of G.

Theorem (Alon+BCMR 2015)

Any graph of maximum degree Δ has separation dimension at most $\Delta \cdot 2^{9 \log^* \Delta}$.

Separation dimension of G = (V, E) (Basavaraju, Chandran, Golumbic, Mathew, and Rajendraprasad 2014):

the minimum d such that there is a mapping $V \to \mathbb{R}^d$ such that for any two non-incident edges $uv, xy \in E$, some axis-parallel hyperplane separates $\{u, v\}$ from $\{x, y\}$.

Observation (BCGMR 2014)

The separation dimension of G is the boxicity of the line graph of G.

Theorem (Alon+BCMR 2015)

Any graph of maximum degree Δ has separation dimension at most $\Delta \cdot 2^{9 \log^* \Delta}$.

A fractional version was recently introduced (Loeb & West 2016) and (Alon 2016). It is always at most 3.

• Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).

- Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).
- Planar graphs have boxicity at most 3 (Thomassen 1986).

- Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).
- Planar graphs have boxicity at most 3 (Thomassen 1986).

- Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).
- Planar graphs have boxicity at most 3 (Thomassen 1986).
- Graphs of Euler genus g have boxicity at most 5g + 3 (E., Joret 2013).

- Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).
- Planar graphs have boxicity at most 3 (Thomassen 1986).
- Graphs of Euler genus g have boxicity at most 5g + 3 (E., Joret 2013).
- Graphs with treewidth k have boxicity at most k + 1 (Chandran, Sivadasan 2007).

- Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).
- Planar graphs have boxicity at most 3 (Thomassen 1986).
- Graphs of Euler genus g have boxicity at most 5g + 3 (E., Joret 2013).
- Graphs with treewidth k have boxicity at most k + 1 (Chandran, Sivadasan 2007).
- Graphs with maximum degree Δ have boxicity O(Δ log² Δ) and some have boxicity Ω(Δ log Δ) (Adiga, Bhowmick, Chandran 2011).

Theorem (E. 2015)

- Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).
- Planar graphs have boxicity at most 3 (Thomassen 1986).
- Graphs of Euler genus g have boxicity at most 5g + 3 (E., Joret 2013).
- Graphs with treewidth k have boxicity at most k + 1 (Chandran, Sivadasan 2007).
- Graphs with maximum degree Δ have boxicity O(Δ log² Δ) and some have boxicity Ω(Δ log Δ) (Adiga, Bhowmick, Chandran 2011).

Graphs with Euler genus g have boxicity $O(\sqrt{g} \log g)$, and some have boxicity $\Omega(\sqrt{g} \log g)$.

- Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).
- Planar graphs have boxicity at most 3 (Thomassen 1986).
- Graphs of Euler genus g have boxicity at most 5g + 3 (E., Joret 2013).
- Graphs with treewidth k have boxicity at most k + 1 (Chandran, Sivadasan 2007).
- Graphs with maximum degree Δ have boxicity O(Δ log² Δ) and some have boxicity Ω(Δ log Δ) (Adiga, Bhowmick, Chandran 2011).

Graphs with Euler genus g have boxicity $O(\sqrt{g} \log g)$, and some have boxicity $\Omega(\sqrt{g} \log g)$.

Theorem (E. 2015)

Theorem (E. 2015)

Graphs with Euler genus g without non-contractible cycles of length at most $40 \cdot 2^g$ have boxicity at most 5.

BOXICITY AND ACYCLIC COLORING

A proper coloring is acyclic if any two color classes induce a forest.
Observation

A proper coloring is acyclic if any two color classes induce a forest.

If a graph G has an acyclic coloring with k colors, then $box(G) \le k(k-1)$.

A proper coloring is acyclic if any two color classes induce a forest.

Observation If a graph G has an acyclic coloring with k colors, then $box(G) \le k(k-1)$.

A proper coloring is acyclic if any two color classes induce a forest.

A proper coloring is acyclic if any two color classes induce a forest.

 $\binom{k}{2}$ supergraphs of boxicity 2, containing every non-edge of *G*

A proper coloring is acyclic if any two color classes induce a forest.

k(k-1) supergraphs of boxicity 1 (=interval graphs), containing every non-edge of G

A proper coloring is acyclic if any two color classes induce a forest.

k(k-1) supergraphs of boxicity 1 (=interval graphs), containing every non-edge of G $\Rightarrow box(G) \le k(k-1)$

Theorem (Kawarabayashi, Thomassen 2012)

Theorem (Kawarabayashi, Thomassen 2012)

Theorem (Kawarabayashi, Thomassen 2012)

Theorem (Kawarabayashi, Thomassen 2012)

Theorem (Kawarabayashi, Thomassen 2012)

 \Rightarrow the graph has $O(g^4)$ vertices and is $O(\sqrt{g})$ -degenerate

Theorem (Adiga, Chandran, Mathew 2014)

If a graph G with n vertices is k-degenerate, then $box(G) = O(k \log n)$.

Consider the following random bipartite graph G_n :

Consider the following random bipartite graph G_n :

with high probability, G_n has at most $\frac{2n^2}{\log n}$ edges

Consider the following random bipartite graph G_n :

with high probability, G_n has at most $\frac{2n^2}{\log n}$ edges and then genus at most $\frac{2n^2}{\log n} + 2$

Theorem (Adiga, Bhowmick, Chandran, 2011) box $(G_n) = \Omega(n)$ (consequence of Erdős, Kierstead, Trotter, 1991)

Theorem (Adiga, Bhowmick, Chandran, 2011) box $(G_n) = \Omega(n)$ (consequence of Erdős, Kierstead, Trotter, 1991)

It follows that $box(G_n) = \Omega(\sqrt{g \log g})$.

Theorem (E. 2015)

Graphs with genus g, without non-contractible cycles of length at most $40 \cdot 2^g$, have boxicity at most 5.

Theorem (E. 2015)

Graphs with genus g, without non-contractible cycles of length at most $40 \cdot 2^g$, have boxicity at most 7.

G triangulation with edge-width at least $40 \cdot 2^g$.

Theorem (E. 2015)

Graphs with genus g, without non-contractible cycles of length at most $40 \cdot 2^g$, have boxicity at most 7.

G triangulation with edge-width at least $40 \cdot 2^g$.

Theorem (E. 2015)

Graphs with genus g, without non-contractible cycles of length at most $40 \cdot 2^g$, have boxicity at most 7.

G triangulation with edge-width at least $40 \cdot 2^g$.

Theorem (E. 2015)

Graphs with genus g, without non-contractible cycles of length at most $40 \cdot 2^g$, have boxicity at most 7.

G triangulation with edge-width at least $40 \cdot 2^g$.

Theorem (E. 2015)

Graphs with genus g, without non-contractible cycles of length at most $40 \cdot 2^g$, have boxicity at most 7.

Theorem (E. 2015)

Graphs with genus g, without non-contractible cycles of length at most $40 \cdot 2^g$, have boxicity at most 7.

Theorem (E. 2015)

Theorem (E. 2015)

Theorem (E. 2015)

Theorem (E. 2015)

Theorem (E. 2015)

Theorem (E. 2015)

For any proper minor-closed class \mathcal{F} , there is an integer $g = g(\mathcal{F})$ such that any graph of \mathcal{F} of girth at least g has boxicity at most 3.

Theorem (Galluccio Goddyn Hell. 2001)

For any proper minor-closed class \mathcal{F} , there is an integer $g = g(\mathcal{F})$ such that any graph of \mathcal{F} of girth at least g has a vertex of degree at most one or a path with 5 internal vertices of degree 2.
GRAPHS WITH LARGE GIRTH

Theorem (E. 2015)

For any proper minor-closed class \mathcal{F} , there is an integer $g = g(\mathcal{F})$ such that any graph of \mathcal{F} of girth at least g has boxicity at most 3.

Theorem (Galluccio Goddyn Hell. 2001)

For any proper minor-closed class \mathcal{F} , there is an integer $g = g(\mathcal{F})$ such that any graph of \mathcal{F} of girth at least g has a vertex of degree at most one or a path with 5 internal vertices of degree 2.

Theorem (E. 2015)

There is a constant c such that any graph of Euler genus g and girth at least $c \log g$ has boxicity at most 3.

OPEN PROBLEMS

• What is the boxicity of K_t -minor-free graphs? (somewhere between $\Omega(t\sqrt{\log t})$ and $t^4(\log t)^2$)

OPEN PROBLEMS

- What is the boxicity of K_t -minor-free graphs? (somewhere between $\Omega(t\sqrt{\log t})$ and $t^4(\log t)^2$)
- What is the boxicity of toroidal graphs? (somewhere between 4 and 6)

OPEN PROBLEMS

- What is the boxicity of K_t -minor-free graphs? (somewhere between $\Omega(t\sqrt{\log t})$ and $t^4(\log t)^2$)
- What is the boxicity of toroidal graphs? (somewhere between 4 and 6)
- Is it true that locally planar graphs have boxicity at most 3?

Open problems

- What is the boxicity of K_t -minor-free graphs? (somewhere between $\Omega(t\sqrt{\log t})$ and $t^4(\log t)^2$)
- What is the boxicity of toroidal graphs? (somewhere between 4 and 6)
- Is it true that locally planar graphs have boxicity at most 3?
- Is it true that if G has Euler genus g, then O(g) vertices can be removed from G so that the resulting graph has boxicity at most 3? (it is true with 5 instead of 3)

Open problems

- What is the boxicity of K_t -minor-free graphs? (somewhere between $\Omega(t\sqrt{\log t})$ and $t^4(\log t)^2$)
- What is the boxicity of toroidal graphs? (somewhere between 4 and 6)
- Is it true that locally planar graphs have boxicity at most 3?
- Is it true that if G has Euler genus g, then O(g) vertices can be removed from G so that the resulting graph has boxicity at most 3? (it is true with 5 instead of 3)

Most of the questions remain interesting for the dimension of the adjacency poset and the separation dimension of graphs, instead of their boxicity.