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Preface

The workshop was a gathering of 35 people working in combinatorics and theoretical
computer science with special emphasis on discrete geometry, partially ordered sets and
all kinds of interplays between them.

The workshop was a problem oriented. This booklet contains the problems presented
by participants together with some notes on progress. Further problems can be found
in the slides of evening talks on the webpage. During the workshop we had the special
delight of celebrating the 60th birthday of Jerry Spinrad.

The workshop took place in Gułtowy Palace near Poznań in Poland as a satellite event
to the 6th Polish Combinatorial Conference, September 19-23, 2016, in Bȩdlewo.

Organizers
• Stefan Felsner, Technische Universität Berlin

• Piotr Micek, Jagiellonian University, Kraków

Web page
• http://orderandgeometry2016.tcs.uj.edu.pl

Former events
• Order & Geometry Workshop, Berlin, August 12-15, 2013

• Problems in Combinatorics and Posets session, Kraków, September 12-15, 2012
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Problems

Michał Lasoń

Let M be a matroid of rank r on a ground set E of size kr + 1, for k ≥ 2. Let x, y ∈ E
be two elements such that both sets E \ x and E \ y can be partitioned into k disjoint
bases. Do there exist such partitions of these sets which share a common basis?

We conjecture that the answer is ‘yes’ (Conjecture 13, arXiv:1601.08199v2), and prove
it in the case k ≥ 2r−1 + 1 (Proposition 15, arXiv:1601.08199v2).

Louis Esperet

The adjacency poset of a graph G = (V, E), introduced by Felsner and Trotter, is the
poset (PG,≤) with ground set V ∪ V ′ (where V ′ is a copy of V ), in which u ≤ v if u = v

or if the vertices corresponding to u ∈ V and v ∈ V ′ are adjacent in G.
The boxicity of a graph G is the minimum d such that G can be represented as the

intersection of d-boxes in Rd (a d-box is the cartesian product of d intervals of R).
The boxicity of planar graphs and graphs embedded in fixed surfaces is quite well

understood. So is the boxicity of graphs of bounded treewidth. So the next class of
interest (by inclusion) is the class of graphs excluding a fixed minor.

Question: what is the boxicity of a graph with no Kt-minor?
Since we know that the dimension of the adjacency poset is at the most twice the bo-

xicity + the chromatic number + 4, any reasonable bound for the boxicity would translate
into a bound for the dimension of the adjacency poset.

Using a connection with the acyclic chromatic number (discovered by Felsner and
Trotter) and results of Nesetril and Ossona de Mendez, it is not difficult to obtain
O(t4(logt)2). Can we do better? A random graph construction shows that one cannot
expect better than t

√
log t, so the gap is quite large.

Progress

We are able to improve the upper bound to O(t3). As a tool we use r -weak coloring
numbers, which can be seen as a generalization of the degeneracy of a graph. For example,
if G is a graph and its 2-weak coloring number wcol2(G) is bounded by c , then this means
that there is a linear order pi on the vertices of G such that for all v ∈ V (G), the number
of vertices that are preceding v in π and that are reachable from v by a path of length
at most 2 is less than c .

We can show the following relation.

Theorem. For all graphs G, we have box(G) ≤ 2 wcol2(G).
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By a result of van den Heuvel et al. we know that the 2-weak coloring number of
Kt-minor free graphs is at most O(t3). Together with the previous theorem, this implies
the claimed progress on the problem.

Theorem. For all Kt-minor free graphs G, we have box(G) = O(t3).

Stefan Felsner

I have collected some problems about dimension where the complexity status is unknown.

• Dimension of interval orders.
(Small interval orders of dimension 4).

• Dimension of orders of width 4.

• Dimension of an oder of type P + C where P is 2-dimensional and C is a chain.

• Dimension of graphs (either in the version of graph dimension or as dimension of the
incidence order).

• Dimension of grid intersection graphs (we know they are at most 4-dimensional).

Here is a more geometric one:
Does every bipartite 3-dimensional order admit a separated representation?

A separated representation is an order preserving embedding into R3 such that the set of
minima and the set of maxima of the order can be separated by a plane with normal 1.
This relates to triangle containment vs. triangle intersection.

A Problem of Sergio Cabello

• Communicated by Michał Lasoń.

• Scribe: Stefan Felsner

The paper Refining the Hierarchies of Classes of Geometric Intersection Graphs by
Sergio Cabello and Miha Jejčič (arXiv:1603.08974v1) concludes with the following
problem: Is the class of outer-segment graphs a strict subclass of ray graphs? The first
author conjectures that this is the case.

The relevant definitions are:

outer-segment: A graph is an outer-segment graph if it has an intersection model consis-
ting of straight-line segments lying in a disk such that each curve has one endpoint
on the boundary of the disk.

ray: A graph is a ray intersection graph if it is the intersection graph of rays, or equivalently
halflines, in the plane.
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The conclusion continues with the following related question: Consider the class A of
intersection graphs of downward rays, that is, halflines that are contained in the halfplane
below the x-axis. Let B be the class of grounded segments, that is, segments contained
in the halfplane below the x-axis with one endpoint on the x-axis. It is easy to see that
A is a subset of B Is the containment proper?

Progress

The following results where obtained during the workshop.

• A = B, i.e., the classes of downward ray graphs and of grounded segment graphs
coincide.

• There are outer-segment graphs which have no representation with rays.

• There are ray graphs which have no representation with downward rays.

Tillmann Miltzow

Subset Token Swapping on a Path and Bipartite Minimum Crossing
Matchings

Sometimes it happens that some seemingly completely unrelated problems are in fact
equivalent. We first define them and then explain why they are equivalent.

Subset Token Swapping
Input:

1. an undirected connected graph G with n vertices V = {v1, . . . , vn}.
2. a set of tokens T = {t1, . . . , tn}
3. initially token ti is placed on vertex vi .

4. a function D : T → 2V , specifying for token ti the destinations D(ti) ⊂ V .
5. a number k ∈ N.

Question: Does there exists a sequence of at most k swaps such that after performing
every token is at one of its destination vertices? Here a swap, is an exchange of two
tokens on a pair of adjacent vertices.

Bipartite Minimum Matching
Input:

1. two parallel lines ` and `′

2. a plane bipartite graph G with all black vertices on ` and all white vertices on `′.

3. a number k ∈ N.
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The number of required swaps equals the number of inverions of the target permutation
π, which in turn equals the number of crossings of the corresponding plane graph.

Question: Does there a perfect matching M ⊆ G with at most k crossings?
To see that these two problems are equivalent note that a valid target configuration for

the tokens corresponds to a perfect matching in the vertex-token graph or equivalently a
permutation π, see Figure 0.1. If the underlying graph is a path, we know that the total
number of swaps to reach π equals the number of steps in bubble sort to sort π. It is
well-known that the length of the sequence equals the number of inversions of π, which
in turn is equivalent to the number of crossings in case that π is interpreted as a perfect
matching. We ask if this algorithmic problem is NP-hard.
Warning: We studied the token swapping problem already intensively. If you are inte-

rested in the general problem it might be beneficial to consult me first, to see what is
open and what is already known.

Jerry Spinrad

I have a number of questions I am interested in.
The general structure is based on the following generalization of transitivity, which I

called triangle–extendability in my book on efficient graph representations.
A characterization of a transitively orientable graph is that the vertices can be ordered

x1, . . . , xn such that whenever you select 3 vertices, the only non-edge cannot be from
the first to the last vertex in the ordering.

In triangle–extendability, this definition is changed so that whenever you select 4 ver-
tices, you cannot have the only non-edge being from the 1st to the last in the ordering.

The classes I am interested in at the moment (though many other classes could be
considered; for example chordal and co-triangle extendible instead of chordal and co-
comparability) involve generalizations of permutation graphs/2 dimensional posets.

There are 2 natural ways to generalize permutation graphs.

1) The class such that both G and G complement are triangle–extendible

2) Require a single ordering of the vertices which is a triangle–extendible ordering for
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both G and G complement
These 2 classes are equivalent (both characterizations of permutation graphs) when

we use transtitively orientable, but are different when we use triangle–extendability.
Most of the natural questions are open for both classes, though given the ordering you

can solve clique and independent set in polynomial time. I am particularly interested in
these questions

Recognition.
Counting (the number of graphs in the class on n vertices is 2Θf (n) for which f (n)?
Characterizations and representations of the class.

A perhaps more tractable question I have come up with recently is whether all graphs
in the class have either a clique or indepenent set of size cn1/2 as permutation graphs do;
this would put an upper bound on the number of graphs in the class which is somewhat
better than any obvious upper bound I see. Of course, of the 2 classes, the 2d class is
smaller and probably easier to work with.

Veit Wiechert and Gwenaël Joret

The dimension of dense bipartite graphs

Given a bipartite graph G = (A∪B,E), we can associate with G a poset PG of height 2.
Namely, we view A as the minimal elements, B as the maximal elements, and we have
that a ∈ A is below b ∈ B in PG iff a and b are adjacent in G. Now it is natural to define
the dimension of G as the (poset) dimension of PG.
Our goal is to establish a connection between the edge-density of bipartite graphs and

their dimension. Clearly, in the current setting we get a problem as complete bipartite
graphs have large density but small dimension. However, if we remove a matching from
these graphs, then we obtain large standard examples, which have large dimension. So to
overcome this issue, we do not only consider the dimesion of the bipartite graph itself,
but also the dimension of its subgraphs. Thus, given a bipartite graph G we let

dims(G) := max
H⊆G

dim(H).

We are interested in the following question: Do bipartite graphs with large density have
large dims? More precisely, if G is a class of bipartite graphs with unbounded average
degree, is it true that then dims must be unbounded on graphs of G?

If this is indeed the case, then this would solve the conjecture that graph classes with
bounded expansion can be characterized in terms of poset dimension.

Tomasz Łuczak

Conjecture Let P be a poset of height 2, with dimension at least d ≥ 13 and girth at
least dd . Then for every P ′ ⊆ P we have dimP ′ ≤ dimP .
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Casey Tompkins

Let La(n, P ) be size of the largest collection of subsets of [n] not containing P as a weak
subposet with respect to the containment relation. Let e(P ) be the maximum number k ,
such that for all n the k middle levels of 2[n] do not contain P as a subposet. It is
conjectured that

lim
n→∞

La(n, P )(
n
n/2

) = e(P ).

A reasonable step in this direction is to prove that there is some function f depending
only on e(P ) so that

La(n, P ) ≤ f (e(P ))

(
n

n/2

)
.

Kolja Knauer

For every fixed k ≥ 3, it is NP-complete to decide if a given poset P has dimension at
least k . The set of vertices of the linear extension graph GL(P ) of P is the set of all
linear extensions of P and there is an edge between L and L′ if and only if L and L′ differ
by a neighboring transposition, i.e., by reversing the order of two consecutive elements.

If instead of the poset its linear extension graph is considered to be the input of the
dimension problem, then we get:

Observation 1. The dimension of a poset P can be computed in quasi-polynomial-time
in n = |GL(P )|.

Beweis. It is a classic result that dim(P ) ≤ ω(P ), where ω(P ). Since any permutati-
on of an antichain appears in at least one linear extension, ω(P )! ≤ n and therefore
dim(P ) ≤ log(n). Thus, to determine the hull-number of GL(P ) it suffices to compute
the intersection poset of all subsets of at most log(n) linear extensions. Since the inter-
section poset can be computed in polynomial-time, we get the claimed upper bound.

The question is, whether quasi-polynomial-time is best-possible. In fact in the paper
Convexity in Partial Cubes: the Hull Number with Marie Albenque we made the following:

Conjecture 1. The dimension of a poset given its linear extension graph can be deter-
mined in polynomial-time.
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Patrice Ossona de Mendez

• Scribe: Stefan Felsner
Let ∆ be an abstract simplicial complex. It is known that ∆ has a geometric realization

in some dimension. In [POM] it is shown that the order dimension gives an upper bound
on the dimension of a realization space. More precisely:

dim(P∆) ≤ d =⇒ ∆ is realizable in Rd−1.

The proof is based on a construction due to Scarf and shows that ∆ has a realization as
a subcomplex of a simplex. The equivalence in the case d = 3 was shown by Schnyder.

Problem: Find a geometric characterization of simplicial complexes that have no reali-
zation in Rd−1 for d < dim(P∆).

[POM] P. Ossona de Mendez, Realization of posets, Journal of Graph Algorithms and
Applications, 6 (2002), pp. 149–153.

Rado Fulek

Picture Hanging Puzzle

We simplified a little bit a question from [DD+14].
Let S denote a sequence over alphabet Σ = {a1, . . . , an}. We require that every

element of Σ occurs at least once in S. A simplification of S is an operation that deletes
from S two consecutive occurrences of the same element of Σ. The sequence S is trivial
if we can obtain an empty sequence from S by successively applying simplifications. A
restriction of S to a subset Σ′ ⊂ Σ is a sequence S′ obtained from S by deleting every
element in Σ \Σ′.
What is the order of magnitude of the function f (n) defined as the minimum value such

that there exists S over Σ, |Σ| = n, of length f (n) with the following property. For every
ai ∈ Σ the restriction of S to Σ \ {ai} is trivial. It is known that f (n) ∈ O(n2) [DD+14]
and f (n) ∈ Ω(n2

√
log n) (unpublished).

[DD+14] Erik D Demaine, Martin L Demaine, Yair N Minsky, Joseph SB Mitchell, Ro-
nald L Rivest, and Mihai Patraşcu. Picture-hanging puzzles. Theory of Computing
Systems, 54(4):531–550, 2014.
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Jerry Griggs

Finding Diamonds in the Middle Three Layers

It interesting to study the maximum size of a family of subsets of an n-set that contains no
(weak) copy of a given poset P , denote this La(n, P ). It is conjectured [GriLu,GriLiLu]
that La(n, P ) is asymptotic to

(
n
bn/2c

)
times some integer e(P ) depending on P , as

n → ∞. While this has been proven for several posets P , it remains a tough challenge,
even for the four-element diamond poset. When P is the diamond, the conjecture says
that La(n, P ) ∼ 2

(
n
bn/2c

)
. Taking all sets of two middle sizes gives a diamond-free family of

of the conjectured asymptotic size. The upper bound has been brought down in a series of
papers by various authors, with current best bound [GroMetTom2] being 2.20711

(
n
bn/2c

)
.

Restricting attention to just the middle three levels should make the problem appealing
to a broader audience, as now the no-diamond problem is that of bounding the largest
size of a family of vertices in the middle three slices of the hypercube that induces no C4.

For simplicity, let’s assume n is even, say 2k , and we consider families F of subsets
of [n], where the subsets have only the three middle sizes, k + 1, k, k − 1. Let us say
the proportions of all subsets of those sizes that we have in F are denoted by P,Q,R,
respectively. The conjecture is that for every ε > 0, for all sufficiently large n, if P +

Q+R > 2 + ε, then F contains a diamond. In this restricted case, we are still rather far
from a proof (though most experts continue to believe the conjecture). The best upper
bound in this case is currently 2.15121

(
n
bn/2c

)
[Bal] (also see [ManShe]), which we seek

to improve.
A diamond in the middle three levels consists of two k-subsets at Hamming distance

two, along with their union (of size k + 1) and their intersection (of size k − 1). Let
us note that for any subset X of the lower level and subset Y of the upper level, with
X ⊂ Y , there are precisely two subsets in the middle level between them, and these four
sets together form a diamond. Define the Johnson graph J = J(n, k) (with k = n/2) to
have as vertices the n/2-subsets of [n], with edges joining any two vertices (subsets) at
Hamming distance two. We see that diamonds in the middle three levels correspond to
edges in the Johnson graph.

Each subset in the upper level, those of size k + 1, has a down-shadow in the middle
level of k + 1 subsets (each obtained by deleting an element), and those subsets form a
clique in J. Because an edge of J is below a unique upper level subset, it means that the
down-shadows of the upper level subsets decompose the edges of J into edge-disjoint
cliques, each on k + 1 vertices. Two of the cliques may share a vertex of J, but never
more than one. Dually, the up-shadows of the lower level subsets decompose the edges
of J into edge-disjoint cliques, each on k + 1 vertices. A clique from a down-shadow and
a clique from an up-shadow have at most two vertices in common; When they have two,
the vertices form an edge in J, and there is a diamond consisting of those two subsets
along with the upper level set and the lower level set that generated the cliques.

We presented ideas in a particular case, P = R = .9 for obtaining a value of Q to
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ensure there must be a diamond in family F (we can use Q > .4), based on a worst-case
scenario for how these two clique decompositions interact with the k-sets in F. We hope
that further insights can lead to improved bounds on Q in this sample case, and then for
general P,R.
Ryan Martin and Libby Taylor are pursuing a somewhat different approach, deriving

properties of amaximal three-layer diamond-free family, working out from the middle layer
Johnson graph (instead of from the outer layers in). Their goal is to obtain inequalities
involving the degrees of the sets in the family, viewed as graph vertices, to bound the
family size.

[AxeManMar] M. Axenovich, J. Manske, and R. Martin, Q2-free families in the Boolean lattice,
Order 29, (2012), 177–191.

[Bal] J. Balogh, P. Hu, B. Lidický, and H. Liu, Upper bounds on the size of 4- and 6-cycle-free
subgraphs of the hypercube, European Journal of Combinatorics 35 2014, 75-85.

[GriLi] J. R. Griggs and W.-T. Li, Progress on poset-free families of subsets, in IMA Springer
volume, 2016.

[GriLi2] J. R. Griggs and W.-T. Li, Poset-free families and Lubell-boundedness, J. Combinatorial
Theory (Ser. A) 134 (2015), 166–187.

[GriLiLu] J. R. Griggs, W.-T. Li, and L. Lu, Diamond-free families, J. Combinatorial Theory
(Ser. A) 119 (2012), 310–322.

[GriLu] J. R. Griggs and L. Lu, On families of subsets with a forbidden subposet, Combin. Probab.
Comput. 18 (2009), 731–748.

[GroMetTom] D. Grósz, A. Methuku, and C. Tompkins, An improvement of the general bound
on the largest family of subsets avoiding a subposet P , ArXiv:1408.5783.

[GroMetTom2] D. Grósz, A. Methuku, and C. Tompkins, An upper bound on the size of diamond-
free familes of sets, ArXiv:1601.06332.

[Kat1] G. O. H. Katona, Forbidden inclusion patterns in the families of subsets (introducing a
method), in Horizons of Combinatorics, Bolyai Society Mathematical Studies, 17, Bolyai
Mathematical Society, Budapest and Springer-Verlag, 2008, pp. 119–140.

[KatTar] G. O. H. Katona and T. G. Tarján, Extremal problems with excluded subgraphs in the
n-cube, in: M. Borowiecki, J. W. Kennedy, and M. M. Sysło (eds.) Graph Theory, Łagów,
1981, Lecture Notes in Math., 1018 84–93, Springer, Berlin Heidelberg New York Tokyo,
1983.

[KraMarYou] L. Kramer, R. R. Martin, and M. Young, On diamond-free subposets of the Boolean
lattice, J. Combinatorial Theory (Ser. A) 120 (2013), 545–560.

[ManShe] J. Manske and J. Shen, Three layer Q2-free families in the Boolean lattice, Order 30
(2013), 585–592.
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Jean Cardinal

Baxter d-permutations

Guillotine partitions are dissections of the unit square into rectangles obtained by re-
cursively splitting by a vertical or horizontal segments. The combinatorial structures of
those partitions are in one-to-one correspondence with so-called separable permutations.
Separable permutations can be defined as those avoiding the patterns 2413 and 3142.
Similarly, separable permutations can be used to define the corresponding series-parallel
orders, the family of two-dimensional partial orders obtained by series and parallel com-
positions.

This can be generalized to more general dissections of the square. Let us consider the
equivalence classes obtained on arbitrary dissections by shifting the segments in a way
that preserves their incidence relation. In 2005, Ackerman, Barequet, and Pinter gave an
elegant bijection between those equivalence classes and Baxter permutations [ABP06].
An example is given in the figure. Baxter permutations can be defined as avoiding some
simple vincular patterns.

Examples of floorplans and their corresponding Baxter permutations (from
Balachandran and Koroth, 2011).

In 2008, Asinowski and Mansour generalized separable permutations to separable d-
permutations, and showed those were in bijection with 2d−1-dimensional guillotine par-
titions [AM10]. They posed the question of describing a class of d-permutations which
would generalize Baxter permutations in the sense of being in a natural bijection with
2d−1-dimensional partitions. In particular, can we generalize the bijection from Ackerman
et al. [ABP06] to higher-dimensional partitions?

[ABP06] E. Ackerman, G. Barequet, and R.Y. Pinter. A bijection between per-
mutations and floorplans, and its applications. Discrete Applied Mathematics, 154
(12), pp. 1674–1685, 2006.

[AM10] A. Asinowski and T. Mansour. Separable d-permutations and guillotine
partitions. Annals of Combinatorics, 14, pp. 17–43, 2010.



Gułtowy Workshop Order & Geometry 2016 12

Alex Pilz

Let S be a set of n points in the plane, labeled from 1 to n. A crossing-free geometric
(straight-line) path with vertices on S is monotonic if the labels encountered along the
path are monotonically increasing. Sakai and Urrutia (Non-crossing Monotonic Paths in
Labeled Point Sets on the Plane, EuroCG 2015) show that, for any set of n points in
general position, there is a monotonic path of length c(

√
n − 1) for c = 1.0045 . . . .

We consider a modification of the question in the following way. A crossing-free geo-
metric tree with vertices on S is monotonic if the labels encountered during a breath-first
traversal of the tree is monotonically increasing or decreasing. Note that the traversal
has to be done in the order given by the embedding of the tree (i.e., by the rotation
around each vertex). What is the largest k s.t. every point set has a monotonic tree of
size at least k . We may also consider depth-first traversal and other variations.

Progress

For monotonic breath-first traversal, we found a family of labelings for points in convex
position that arguably allow only trees of size O(n2/3). However, we do not have a detailed
proof so far. Similarly, we could argue that, for monotonic depth-first traversal, there are
labelings of points in convex position that admit only trees of size O(n1/2). Again, we do
not have worked out all details for proving correctness of the construction.

Csaba Biro

We define two kinds of partial orders between certain closed line segments of R2. The
segments subject to these orders have endpoints (x1, 0) and (x2, x3) such that x1 < 0 and
x2, x3 > 0. First we define the partial order of the first kind. We say, the line segment x
(whose endpoints are (x1, 0) and (x2, x3)) is greater than the line segment y (whose
endpoints are (y1, 0) and (y2, y3)), if x1 < y1, x2 > y2 and every vertical line that intersects
both x and y intersects x strictly above y . In particular, if x and y intersect, then they
are incomparable.

For the partial order of the second kind, we say, the line segment x is greater than the
line segment y , if x1 < y1 , x2 < y2 and every vertical line that intersects both x and y
intersects x strictly above y . In other words, we reverse the ordering rule on the right
end of the line segment.

Let P be a poset. If there is a function f such that for x, y ∈ P , x < y if and only
is f (x) is less than f (y) in the first kind of line segment ordering, then we say P is a
segment order of the first kind. We similarly define segment orders of the second kind.

Question: Is the class of segment orders of the first kind same as the class of segment
orders of the second kind?

Alternatively, we can drop the restriction from the definitions that requires that the
classes intersect the y axis. The definitions of orders are the identical, except the line
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segments that are subject to the order have endpoint of the form (x1, 0), (x2, x3) such
that x1 < x2 and x3 > 0. We call these noncentral segment orders of the first kind and
of the second kind.

Obviously, every segment order of the first (second) kind is also a noncentral segment
order of the first (second) kind. Is it true that either of these class containments is strict?

Progress

Given a partial order of the first kind or second kind and a corresponding representation
with segments, we applied transformations to the plane, such as shearings and changing
the coordinate system, to obtain different characterizations of these partial orders. Using
projective transformations we managed to prove that whenever P is a partial order of
the first, respectively second, kind, then the dual P ∗ of P is a partial order of the first,
respectively second, kind, too. Moreover, we explicitly constructed examples of small
partial orders that are neither of the first nor second kind. Our main ingredient here is
the vertex-edge incidence poset of a graph and a Ramsey argument. The smallest poset
obtained this way is the vertex-edge incidence poset of K9.

Piotr Micek

On-line coloring of unit-length intervals

Presenter presents one unit-length interval on a real line at a time. Algorithm colors
it immediately and irrevocably in such a way that intersecting intervals receive distinct
colors. Algorithm has a strategy to use at most 2ω− 1 colors on any family with clique-
size (or chromatic number) ω. (Any greedy strategy will do.) Presenter has a strategy to
force 3/2ω colors on a family with clique-size ω. (Easy.) Could we finally improve one of
these bounds? I offer 3 beers for a strategy for Algorithm using at most 2ω − 2 colors.

Jerry Spinrad

To compute the width of a poset or the independence number of comparability graphs
we can use a bipartite matching algorithm which essentially runs in O(nm) time.
In some cases where the poset is given with a geometric representation we can do

better. As simple examples take interval orders or containment orders of intervals, i.e.,
2-dimensional orders, in both cases the complexity drops to O(n log n).

A general question is to identify more instances where it is helpful for computing
the width to have the poset given by a geometric representation. More specifically: Are
representations in terms of axis-aligned rectangles or discs helpful?
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Piotr Micek

The Boolean dimension dimB(P ) of a poset P was defined by Nešetřil as the minimum
positive integer d such that there exist k permutations L1, . . . , Lk of the elements of P
and a Boolean formula φ(z1, . . . , zk) so that for every two elements x , y in P , we have

x ≤ y in P if and only if φ([x ≤ y in Li ]i∈[k]) = 1.

It is easy to see that

1. dimB(P ) ≤ dim(P ), for any poset P ;

2. dimB(Sn) ≤ 4, where Sn is the standard example of order n ≥ 2;

3. Boolean dimension of incidence posets is at most 4;

4. Boolean dimension of posets of height 2 is unbounded (by simple counting: there
are roughly 2n

2
posets on n elements with height 2, while there are only 22k (n!)k

posets on n elements with Boolean dimension at most k);

5. universal interval orders In, i.e. interval orders consisting of all intervals with end-
points within {1, . . . , n}, have unbounded interval dimension (the proof is very
similar to the proof that they have unbounded usual dimension).

Jarik Nešetřil in [NP89] posed the following problem

Problem: Is it true that planar posets have bounded Boolean dimension?

We were working on this problem before the workshop with Grzegorz Gutowski and
Gwenaël Joret. After the workshop we worked together with Heather Smith, Libby Taylor,
Tom Trotter and Bartosz Walczak.

We proved that posets with cover graphs of bounded pathwidth have bounded Boolean
dimension. This is a little indication for a positive resolution of the problem as the usual
dimension is unbounded for this class of posets (cf. Kelly’s examples).

[NP89] J. Nešetřil and P. Pudlák, A note on Boolean dimension of posets, in Irregularities
of partitions, Springer, 1989, pp. 137–140.
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Paweł Rzążewski

In the family of representation extension problems we are given a graph G, which belongs
to some class of geometric intersection graphs (say, interval graphs) and its partial repre-
sentation R. In other words, the representation of some vertices is already fixed. We ask
for a representation R′ of the whole G, which extends R. Klavík et al. [Klav+] showed
polynomial-time algorithms deciding the extendability of representations of proper and
unit interval graphs.

We study a more general problem. Let us focus on the simplest case of proper interval
graphs, but of course we can state analogous questions for other classes.

Problem: A proper interval graph G, a partial representation R of G, k ∈ N

Question: Is there a set of at most k intervals in R, whose removal results in an extendible
representation of G?

By analyzing minimal obstructions for extendible proper interval representation, we
obtained a simple branching algorithm solving the problem in time 3k · nO(1), where n is
the number of vertices of G. Can we solve it in polynomial time?

[Kla+] P. Klavík, J. Kratochvíl, Y. Otachi, I. Rutter, T. Saitoh, M. Saumell, and T. Vysko-
cil, Extending partial representations of proper and unit interval graphs, in SWAT 14,
LNCS 8503, 253–264, 2014.

Ryan Martin

• Scribe: Piotr Micek

Let Qn be the Boolean lattice of dimension n. Now R(Qm, Qn) is the minimum d such
that every red/blue-coloring of elements of Qd there is a red induced copy of Qm or blue
induced copy of Qn. Can we improve the bounds from [AW15]?

2n ≤ R(Qn, Qn) ≤ n2 + 2n,

R(Q3, Q3) ∈ {7, 8}.

It is known that R(Q2, Q2) = 4.

[AW15] Maria Axenovich and Stefan Walzer, Boolean lattices: Ramsey properties and
embeddings, https://arxiv.org/pdf/1512.05565v1.pdf.
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A poset Q arrows a poset P , if for every two-coloring of a point set of Q, there is a
monochromatic induced copy of P in Q. We write Q← P to denote that Q arrows P . It
is easy to see that every poset P has a poset Q that arrows it. In order to construct Q,
simply start with a copy of P and replace each point with a copy of P .

We are interested in three functions capturing the worst scenario posets to arrow:

f1(n) = max
P
|P |=n

min
Q
Q→P

|Q|

f2(n) = max
P

height(P )=n

min
Q
Q→P

height(Q)

f3(n) = max
P

width(P )=n

min
Q
Q→P

width(Q)

Rödl and Nešetřil [NR84] proved that f2(n) = 2n − 1. The lower bound is easy. Indeed,
in order to get to a contradiction, suppose that Q ← P and height(Q) ≤ 2n − 2 while
height(P ) = n. Partition Q into at most 2n − 2 antichains. Color n − 1 antichains red
and the other (at most n − 1) blue. Clearly, posets induced by each of the colors have
height at most n−1 so there cannot be an induced copy of P . For the upper bound they
apply the amalgamation technique, see [NR84] for details.

The two other functions were studied by Kierstead and Trotter in [KT87]. For the
f1(n) function the best known bounds are

1

4
n2 ≤ f1(n) ≤ n2 − n + 1

The upper bound is given basically by the substitution argument described above. The
lower bound is witnessed by the poset P consisting of an antichain and chain, both of
size n/2 with no comparabilities between them.
The most exciting gap stays open for the f3(n) function:

2n ≤ f3(n) ≤ n2

The lower bound 2n − 1 is again easy. But in order to get 2n from below one needs to
work a bit more, see [KT87].

[KT87] H.A. Kierstead and W.T. Trotter A Ramsey theoretic problem for finite ordered
sets. Discrete Math. 63 (1987), 217–223.

[NR84] J. Nešetřil and V. Rödl Combinatorial partitions of finite posets and lattices—Ramsey
lattices. Algebra Universalis, 19 (1984) 106—119.


